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ABSTRACT

Mechanistic studies of one-electron reduction in water using samarium were carried out. Unexpected disproportionation in water was observed
via UV−vis spectroscopic analysis. This fact indicates that low-valent samarium species can exist in water. Furthermore, the SmCl3−Sm and
SmCl3−Mg systems were found to act as good one-electron reducing agents in water.

The use of samarium as a single electron transfer reagent in
organic synthesis has been developed, and numerous ex-
amples, such as coupling, reduction, cyclization, and the
Barbier reaction, have been widely studied and utilized.1,2

On the other hand, the use of water as a solvent for organic
reactions has been attracting attention because of its advan-
tages with regard to environmental concerns, and numerous
successful reactions have been reported.3,4 Samarium-medi-

ated reactions in aqueous media have also been reported;
however, the mechanism underlying these reactions remains
unclear.5 To develop this environmentally benign method,
we investigated the mechanism of these samarium-mediated
reactions. A low-valent samarium species was found to exist
in water and act as a one-electron reducing agent.

Initially, we conducted UV-vis spectroscopic analysis to
obtain information on the reaction intermediates.6 UV-vis
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spectroscopic analysis indicated the existence of the low-
valent samarium species (Figure 1). Addition of samarium

powder to 0.1 M HCl resulted in a color change to reddish
purple, and absorption was observed at about 560 nm, the
characteristic absorption of Sm(II).7 These results suggested
that a low-valent samarium species such as SmCl2 could exist
and act as an active species in water. However, this solution
was unstable, and the absorption immediately disappeared,
accompanied by a color changed to yellow, possibly due to
SmCl3 formation. To obtain a more stable low-valent
samarium species, another investigation was conducted using
SmCl3 and Sm powder. SmCl3 in H2O is a pale yellow
solution. After Sm powder was added to the solution, the
color gradually changed to reddish purple, and absorption
was observed at about 560 nm. This result indicated that
disproportionation occurred; that is, SmCl3 was reduced by
Sm powder.8 This reddish purple solution was comparatively
stable; indeed, absorption at 560 nm remained after 30 min.
It is noteworthy that low-valent samarium species are known
to be unstable in water;9 however, this SmCl3-Sm system
gave stable low-valent samarium species, even in water
(Scheme 1).

To investigate this water-based SmCl3-Sm system, it was
applied to the pinacol coupling (Table 1).10,11 As expected,

the coupling product was obtained in good yield using 1
equiv of SmCl3 and 3 equiv of Sm powder. The equimolar
mixture of SmCl3 and Sm powder was ineffective in this
reaction, owing to their sluggish disproportionation. Interest-
ingly, the SmBr3-Sm and SmI3-Sm systems exhibited lower
reactivity.12 Various aldehydes and ketones were screened
to examine the generality of this reaction (Table 2). In the
case of aromatic aldehydes and ketones, the coupling product
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Figure 1. UV-vis spectra of samarium powder in 0.1 M HCl (a)
and UV-vis spectra of SmCl3 and samarium powder (b) at 20°C.

Scheme 1

Table 1. SmCl3-Sm-Mediated Pinacol Coupling of
Benzaldehyde in Water

yield (%)

entry ratio (mmol) (Sm/SmCl3/PhCHO) 1 (dl/meso)a 2a

1 1.0:1.0:1.0 trace 5
2 2.0:1.0:1.0 52 (55:45) 2
3 3.0:1.0:1.0 81 (58:42) 2
4b 3.0:1.0:1.0 25 (51:49) trace
5c 3.0:1.0:1.0 32 (43:57) 10
6 0:3.0:1.0 0 0
7 3.0:0:1.0 trace 0

a Isomeric ratio was detemrined by GC analysis and/or or1H NMR
spectra.b SmBr3 was used instead of SmCl3. c SmI3 was used instead of
SmCl3.

Table 2. SmCl3-Sm-Mediated Pinacol Coupling in Watera

yield (%)

entry RCOR′ 3 (dl/meso) 4

1 PhCHO 81 (52:48) 2
2 4-MeOC6H4CHO 75 (52:48) 16
3 4-CF3C6H4CHO 83 (56:44) 5
4 4-ClC6H4CHO 71 (56:44) 11
5 PhCOCH3 75 (54:46) 2
6 3-MeOC6H4COCH3 0 48
8 PhCH2CH2COCH3 0 62

a Sm/SmCl3/RCOR′ ) 2:1:1. b Isomeric ratio was determined by1H
NMR spectra.
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was obtained in good yield. On the other hand, unimolecular
reduction occurred using aliphatic aldehydes and ketones.
A solid substrate also resulted in good yield.

To obtain insight into the characteristic features of this
low-valent samarium species, the Barbier reaction of benz-
aldehyde and allyl bromide was examined using the SmCl3-
Sm system (Scheme 2). Interestingly, the allylated product

was not obtained, while the coupling product was obtained
in good yield.13 In this case, allyl bromide might act as an
activator of Sm metal. The detailed mechanism is now under
investigation in our laboratory.

Furthermore, we found that the SmCl3-Mg system also
acts as a good one-electron reducing agent (Scheme 3).

Indeed, the coupling products were obtained in good yield
using 1 equiv of SmCl3 and 3 equiv of Mg powder.

In summary, we demonstrated pinacol coupling using
samarium in water. Unexpected disproportionation in water
was detected via UV-vis spectroscopic analysis. This fact
indicates that low-valent samarium species can exist in water.
Furthermore, the SmCl3-Sm and SmCl3-Mg systems were
found to act as good one-electron reducing agents in water.
We believe that may provide a new method for water-
mediated organic reactions.

Supporting Information Available: Experimental details
for the Sm(II)-mediated pinacol coupling reactions in water.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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E.; Duñach, E.; Périchon, J.J. Chem. Soc., Chem. Commun.1989, 276. (b)
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